dji

DJI Phantom 4 Pro fuori produzione (per ora)

DJI Phantom 4 Pro out of stock

Da qualche giorno campeggia sulla pagina ufficiale del DJI Phantom 4 Pro V2.0 l'avviso che vedete in copertina e che recita:

Phantom 4 Pro non è più in produzione.

invitando l'utente a consultare l'ultimo arrivato del colosso cinese, il Mavic 2 nelle sue varie declinazioni. Rilasciando un'intervista a The Verge, Adam Lisberg direttore delle comunicazioni DJI ha voluto smentire un'uscita di Romeo Durscher, amministratore di Public Safety Integration dell'azienda cinese. Quest'ultimo aveva affermato che oramai la linea Phantom era giunta al termine del suo sviluppo e sarebbe quindi stata abbandonata, di fatto puntando tutto sulla serie Mavic.

Due to a shortage of parts from a supplier, DJI is unable to manufacture more Phantom 4 Pro V2.0 drones until further notice. (A causa della mancanza di parti da un fornitore, DJI non è in grado di produrre più droni Phantom 4 Pro V2.0 fino a nuovo avviso.)

C'è da dire che già a novembre del 2018 lo stesso Lisberg aveva rilasciato medesima risposta a chi gli chiedeva della penuria di Phantom 4 Pro V2.0. A chi cercava di carpire informazioni sul Phantom 5, i cui rumors ci perseguitano da un paio d'anni, Lisberg ha risposto così:

As for the Phantom 5 rumors, we’ve never said we considered making a Phantom 5 in the first place, so there’s nothing to cancel (Per quanto riguarda le voci di Phantom 5, non abbiamo mai detto di prendere in considerazione la creazione di un Phantom 5 in primo luogo, quindi non c'è nulla da cancellare)

La verità è che dopo 5 mesi, la spiegazione che i fornitori non riescano a produrre le componenti per i Phantom 4 Pro V.20 (ma ci riescano benissimo per i Phantom 4 RTK) sa tanto di scusa, poco credibile. Potrebbe esserci dietro una strategia di marketing che punta a massimizzare le vendite del Mavic 2 Pro, un concorrente diretto del Phantom 4 Pro sia in termini di qualità che di prezzo?

Mavic 2 Pro: perché acquistarlo e dove comprarlo

Phantom 4 Pro vs Mavic 2 Pro: otturatore meccanico vs otturatore elettronico

Il Mavic 2 Pro monta un sensore da 1" con ottica Hasselblad, storico e prestigioso marchio fotografico svedese che da un paio d'anni è sotto il controllo DJI, azionista di maggioranza. Tuttavia il Phantom 4 Pro vanta un otturatore meccanico e una sensibilità ISO che può arrivare per il video fino a 6400 in manuale e per le foto fino a 12800, mentre il Mavic 2 Pro si ferma a 3200 in entrambi i casi e ha il solo otturatore elettronico. Nel campo dello scatto a raffica, il PH4P raggiunge i 14 fotogrammi, mentre il M2P si ferma a 7.

In termini prettamente fotografici, la presenza del solo otturatore elettronico è un passo indietro: se quest'ultimo ha certamente più vantaggi dell'otturatore meccanico (niente parti in movimento, che vuol dire consunzione, manutenzione, consumo batteria, silenziosità, zero micromosso con tempi lenti, etc.), nella declinazione "rolling shutter" (il global shutter non viene preso in considerazione per via dei suoi costi non accessibili al mercato consumer) presenta il tipico svantaggio di questa tipologia di otturatori, ovvero la presenza di artefatti sulle immagini dovute al sistema di scansione dell'alto in basso (il sensore viene quindi esposto alla luce in istanti diversi) in fase di acquisizione delle medesime. Tali artefatti sono soprattutto visibili in termini di distorsione di un soggetto in movimento ripreso con tempi di posa molto veloci. L'otturatore meccanico (costituito da due superfici meccaniche disposte parallelamente al piano focale: tali superfici sono dette tendine e sono composte da lamelle) quando lavora in modalità "sincro-X" non presenta questi artefatti, perché la seconda tendina si chiude quando la prima è completamente aperta: il sincro-X si attesta intorno a 1/250 di secondo. In tal modo è paragonabile al global shutter elettronico a costi 10 volte inferiori. Con tempi più veloci la seconda tendina si chiude quando la prima non è ancora completamente aperta e questo espone il sensore alla luce in istanti leggermente diversi, più o meno come il sistema rolling shutter (il cui tempo sincro-X è mediamente 1/60 di secondo): tuttavia gli artefatti prodotti dall'otturatore meccanico pur presenti sono praticamente invisibili, cosa che ne fa una tecnologia per ora decisamente superiore.

Se da una parte la strategia di marketing di DJI può essere comprensibile, dall'altra Lisberg non smentisce completamente Durscher: asserendo che per ora DJI non ha preso in considerazione lo sviluppo di un Phantom 5, di fatto ha detto che la linea Phantom se non è stata abbandonata è comunque ferma. Tutto in attesa di quello che avverrà con l'entrata in vigore del Regolamento transitorio EASA previsto nell'estate 2020? Difficile dirlo oggi.

Nel frattempo consigliamo ai numerosi possessori del Phantom 4 Pro di acquistare le parti di ricambio minimamente necessarie (in primis i motori) per non rischiare di rimanere a terra in futuro. Dal punto di vista ENAC sia il Phantom 4 Pro sia il Mavic 2 Pro operano nella stessa classe e categoria, ovvero CRO nello scenario standard 1, mentre nel futuro mondo EASA potranno continuare a volare nelle Specific fino al 2022, quando saranno obbligatori i droni marchiati CE.

Posted by The Staff in News

Guida a UgCS+Litchi: programmare una missione automatica per il DJI Spark

UgCS+Litchi tutorial

Chi è pilota di UAV, che lo sia da tempo o che lo stia diventando, avrà sicuramente cercato in rete, almeno una volta, informazioni su app per il volo automatico. Chi possiede un drone DJI conosce da tempo questa possibilità, così come i possessori di mezzi Parrot: tutti gli altri (per citarne alcuni: Walkera, Yuneec, le italiane ItalDron piuttosto che la fu FlyTop) si devono affidare purtroppo soltanto alle applicazioni di controllo fornite con il mezzo stesso (eccezion fatta per lo Yuneec H520). Facciamo qualche nome di app, alcune gratuite altre a pagamento, disponibili per i vari mobile device sia Android che iOS, che consentono il volo automatico, con il solo intento didascalico e certi di dimenticarne qualcuna: DJI GS Pro (solo iPad), Pix4D Capture, DroneDeploy, Drone Harmony, Autopilot, Litchi, PrecisionMapper, AirMap, Altizure, UgCS. Chi se ne intende un po' avrà subito capito che si parla soprattutto di rilevamento aerofotogrammetrico, quindi di topografia.

Affinché queste app funzionino correttamente, il nostro drone deve essere dotato di funzionalità di controllo volo e navigazione tramite waypoint: ecco perché programmare un volo automatico per un DJI Phantom 3/4, un Inspire, un Mavic, un Matrice, è semplice come bere un bicchier d'acqua.

Ben diverso il discorso per il piccolino di casa DJI, lo Spark, molto famoso e diffuso in Italia per la possibilità di farlo rientrare nella categoria dei cd trecentini, SAPR che è possibile pilotare senza patentino. Sulle capacità di ripresa video e fotografica di questo drone non spenderemo altre parole, ci sono ore di letture e video online se ancora siete dubbiosi. Non diremo nulla nemmeno sul Parrot Anafi, altro drone trecentino disponibile dall'estate scorsa e che può effettuare una missione automatica di rilevamento aerofotogrammetrico con l'app Pix4D Capture, di proprietà di Parrot stessa. La guida che state leggendo è stata preparata per ovviare al problema dell'assenza di navigazione tramite waypoint che affligge lo Spark: da quando, fine luglio 2018, DJI ha annunciato un aggiornamento firmware che avrebbe integrato questa funzione, nulla più si è visto e sono già passati 7 mesi. In ogni caso è stato reso disponibile un SDK che supporta questa funzionalità: se fino a poco tempo fa il volo automatico con lo Spark era possibile solo tramite l'app Autopilot attraverso un trick, oggi l'app Litchi ha integrato questa funzione tramite SDK ed è certamente una delle più evolute applicazioni per il volo automatico con un drone di casa DJI. Piccolo problema: Litchi nasce come app di ripresa videofotografica, ma se volessimo effettuare un rilevamento aerofotogrammetrico in modalità automatica?

Ci sono diversi motivi per i quali sarebbe meglio pilotare lo Spark in modo manuale, a cominciare dal fatto che la connessione con il radiocomando è gestita tramite un "semplice" e facilmente disturbabile collegamento WiFi, ma come fare se volessimo gestire la missione in modalità automatica? In fondo alla pagina troverai i riferimenti a due tutorial dei nostri colleghi l'Ing. P. Corradeghini e l'Ing. G. Beretta, che ti mostrano come ottenere questo risultato con l'accoppiata rispettivamente di Thopos+Litchi e di QGIS+Litchi. Noi ci siamo assunti il compito di mostrarti l'accoppiata UgCS+Litchi.

UcGS

UgCS è la Universal Ground Control Station della società lettone SPH Engineering: la versione per desktop, disponibile sia per PC che per Mac e Linux, denominata UcGS mapper, si collega al drone tramite un client e l'app installabile su un mobile device, al quale può così inviare i parametri di una missione automatica. UcGS come dice il nome nasce come sistema per il rilevamento aerofotogrammetrico, è compatibile con molte piattaforme di droni, anche autocostruiti, e viene distribuito in forma commerciale con il nome di UgCS Pro: $69 per 1 licenza mensile, $199 per 1 licenza di 3 mesi, $600 per la licenza perpetua che include 1 anno di aggiornamenti. Questa guida è stata redatta con la versione 3.1 (871).

Perché UgCS? Perché integra un pianificatore di volo che consente l'esportazione dei waypoints e delle rotte in formato KML, il formato per la gestione dei dati geospaziali di Google Earth, diventato uno standard per molte applicazioni: basti pensare che un KML per un volo pianificato può essere importato sia in Litchi ma anche in Pix4D Capture se le modalità predefinite di quest'ultima app facessero al caso nostro.

Poiché dunque a noi interessa UgCS come pianificatore di volo, in fase di installazione possiamo togliere la spunta alle voci "UgCS mapper" e "Video service" e a tutte le voci support. Concludiamo l'installazione lasciando le restanti voci così come proposto dal programma. Quando avvieremo il programma per la prima volta ci verrà chiesto di inserire un codice di attivazione o attivare la trial di 14 giorni: chiudiamo semplicemente la finestra perché a noi non interessano le funzionalità aggiuntive di controllo del drone offerte dal software.

Avviato il client, apriamo il menù principale (icona in alto a sinistra) e creiamo una nuova missione: possiamo partire da zero o importare un file esistente. Per le nostre finalità scegliamo la prima opzione. Nella seconda finestra ci viene chiesto il nome da dare al percorso e di selezionare un modello di drone dal database: naturalmente andiamo a cercare e selezionare il DJI Spark. Il database di UgCS contiene i dati di svariate decine di modelli che aiutano il software a pianificare più correttamente la missione, ecco perché selezionare il modello giusto in questa fase ci aiuterà dopo. Nell'ultima finestra lasciamo i parametri come sono e diamo OK.

UgCS+Litchi tutorial 01
UgCS+Litchi tutorial 02
UgCS+Litchi tutorial 03

Generare un piano di volo basato su DTM

La sezione di questo paragrafo è teorica, in quanto la funzionalità che la supporta richiede la sottoscrizione di una licenza Pro o Enterprise.

Un DEM, acronimo di Digital Elevation Model, è un file raster che contiene dati sull'altimetria della Terra, in grado di aiutare il nostro pianificatore di volo a generare dei waypoint che seguono quote del terreno non approssimate. Il motivo di questa necessità è presto detto: in fotogrammetria l'accuratezza e la risoluzione di un rilievo dipendono dal GSD, acronimo di Ground Sampling Distance, ovvero un valore che determina qual'è il più piccolo dettaglio che il sensore fotografico è in grado di catturare: il GSD è direttamente dipendente dalla distanza del sensore rispetto all'oggetto rilevato, nel nostro caso dall'altezza di volo. Immaginando di dover rilevare un piano inclinato, se mantenessimo una quota costante rispetto al punto di decollo avremo un rilievo in alcuni punti con un GSD di 1 cm, in altri punti un GSD di 3 cm: affinché tutto il rilievo abbia un GSD di 1 cm è necessario fornire al nostro APR informazioni precise sulla quota da mantenere in relazione all'andamento altimetrico del terreno, ad es. un'altezza costante AGL (Average Ground Level) di 30 metri.

I più comuni DEM in rete sono file di grandi dimensioni che tendono a riprodurre grosse estensioni di territorio, e per questo motivo sono pochi accurati, nell'ordine di decine di metri: ma, parlando del caso italiano, grazie alla direttiva europea INSPIRE, sono disponibili molti DEM provenienti da dati LiDAR e che per questo motivo sono molto accurati, nell'ordine di centimetri. Il Ministero dell'Ambiente ha prodotto un DTM da LiDAR, acronimo di Digital Terrain Model, ovvero un modello della superficie geodetica ovvero del terreno pulito da eventuali sovrastrutture come edifici e vegetazione, con passo di 1x1 metri (con accuratezza di ca. 30 cm sul piano orizzontale e 15 cm sul verticale): è possibile farne richiesta al modico prezzo di €2 come diritti di ricerca e ufficio e vi sarà possibile utilizzare questi dati per pianificare una missione che mantenga un GSD costante.

La possibilità di caricare dati di elevazione o ulteriori mappe anche attraverso servizi WMS, lo ripetiamo, è riservata agli utenti Pro o Enterprise. Se volete provarla sarà comunque sufficiente attivare la trial di 14 giorni.

Generare il piano di volo

Volendo proseguire con la versione demo, ma funzionante per le nostre esigenze, di UgCS, passiamo ora a generare il piano di volo. A differenza di altre applicazioni, non siamo costretti a lavorare su quadrati predefiniti o a effettuare complicate manovre per trasformare il quadrato iniziale nel poligono di nostra necessità: in UgCS la creazione del poligono avviene per aggiunta di vertici. Sulla barra degli strumenti a sinistra attiviamo il comando "strumenti per fotogrammetria": ora, ogni volta che faremo doppio clic su un punto della mappa, verrà creato un vertice. Aggiungiamo tutti i vertici necessari a perimetrare l'area da rilevare e infine facciamo in modo che il doppio clic conclusivo avvenga sul primo vertice, affinché il software capisca che abbiamo determinato l'area. In qualsiasi momento ogni vertice può essere selezionato e spostato a piacimento sulla mappa: il programma si occuperà di aggiornare il piano di volo di conseguenza.

Vedremo ora una serie di strisce verdi apparire nel nostro riquadro: sono le strisciate che percorrerà il nostro drone, in accordo con i dati di volo inseriti. La direzione delle strisciate può essere ruotata a nostro piacimento, al fine di individuare la miglior serie di percorsi per l'area da rilevare, funzione molto utile soprattutto in caso di poligoni complessi.

Perché il software generi un percorso corretto, è necessario nella finestra che si è aperta sulla sinistra dello schermo inserire una serie di dati. Ipotizziamo di voler effettuare un rilievo con il nostro Spark che abbia un GSD di 1,5 cm (generalmente sufficiente in considerazione dell'accuratezza di un GNSS differenziale in modalità rover normalmente utilizzato per la correzione metrica di un progetto aerofotogrammetrico): utilizzando un foglio di calcolo dei tanti che è possibile trovare in rete (qualche link in fondo all'articolo), scopriamo che per ottenere un GSD di quel tipo con il sensore dello Spark (6,17x4,56 mm per un FOV di 4,4 mm) il drone deve volare a ca. 40 metri di distanza dal soggetto ripreso, nel nostro caso a 40 metri d'altezza rispetto al suolo.

Purtroppo UgCS non è proprio preciso nel calcolo della quota di volo corretta di uno Spark, per cui affinché si ottenga una quota di volo di 40 metri dobbiamo indicare al software di voler ottenere un GSD di 0,80. Stabiliamo poi che la sovrapposizione in avanti e laterale siano rispettivamente del 70% e del 60%, valori che ben si adattano alla maggior parte delle situazioni. Infine alla voce tipo di altitudine selezioniamo AGL. Questo è il risultato.

UgCS+Litchi tutorial 04
UgCS+Litchi tutorial 05

Se, mantenendo gli stessi dati, avessimo selezionato SLM alla voce tipo di altitudine, avremo ottenuto una missione a quota costante. Confrontando i due risultati, salta subito all'occhio quello che abbiamo spiegato in precedenza: quando cambia la quota del terreno, se il drone non si adatta al terreno il nostro rilievo aerofotogrammetrico avrà GSD differenti nelle sue varie porzioni.

UgCS+Litchi tutorial 06

Se vogliamo possiamo anche attivare il segno di spunta alla voce Doppia griglia: in questo modo il software si preoccuperà di creare una seconda serie di strisciate perpendicolari alla prima. Questa soluzione è molto utile quando si deve effettuare un rilievo aerofotogrammetrico con camera obliqua, la condizione operativa necessaria a ottenere il rilievo 3D di elementi verticali affioranti (case, edifici, etc.).

UgCS+Litchi tutorial 07
UgCS+Litchi tutorial 08

Infine, se attiviamo l'opzione che ci consente di visualizzare il profilo altimetrico della nostra missione, potremo visionare appunto l'andamento in quota del drone e l'altezza di volo adattiva dal terreno, nel nostro caso 39 metri. Per fare questo dovremo cliccare l'icona con i 3 ingranaggi ("parametri") presente accanto al tipo di velivolo selezionato (voce "DJI Spark") e cliccare su "mostra elevazione". Ottenere la quota di volo corretta è importante al fine di calcolare la corretta distanza tra le strisciate del drone.

Siamo dunque pronti a esportare il file KML che contiene il path della nostra missione di volo: ritorniamo sull'icona con i 3 ingranaggi e questa volta clicchiamo su "Esporta in KML". Date un nome al file e salvatelo nella posizione del vostro PC che più vi fa comodo, magari in una cartella sincronizzata con un servizio cloud così da averlo a disposizione anche sui vostri mobile device.

UgCS+Litchi tutorial 09

Litchi

Litchi è un'applicazione a pagamento per il controllo dei droni DJI sviluppata dalla londinese VC Technology Ltd. È probabilmente una delle migliori app del suo genere, superiore persino alla DJI GO/GO4, l'app ufficiale di questi dispositivi. Grazie alla DJI SDK permette di programmare moltissime manovre che il drone eseguirà in maniera automatica, che poi è il motivo per cui vale acquistarla: ad oggi è compatibile con DJI Mavic 2 Zoom/Pro/Enterprise, Mavic Air/Pro, Phantom 4 Normal/Advanced/Pro/ProV2, Phantom 3 Standard/4K/Advanced/Professional, Inspire 1 X3/Z3/Pro/RAW, Inspire 2, Spark.

Uno dei più grandi vantaggi offerti da questa applicazione è il Mission Hub, ovvero un ambiente cloud fruibile da browser con il quale programmare la missione che poi, salvata, può essere aperta dall'app sul dispositivo mobile per essere eseguita. E sarà proprio questo Hub che andremo a utilizzare adesso.

Colleghiamoci dunque al Litchi Hub, creiamo l'account se non ne abbiamo già uno, quindi entriamo nel nostro account così da poter salvare la missione. In basso a sinistra troviamo il pulsante Mission: passandoci il mouse sopra si attiverà un menu dal quale sceglieremo la voce "import". La finestra che si apre consente di importare un file KML o file CSV appositamente formattato o una missione nel formato Litchi esportata in precedenza o creata da altri. Andiamo dunque a selezionare il file KML salvato in precedenza e vedremo le traiettorie create in UgCS apparire nel nostro universo Litchi: ogni vertice delle traiettorie è diventato un waypoint, identificato dall'icona simbolo dell'app che assomiglia a un razzo. Ogni waypoint ha un numero identificativo che rappresenta l'andamento della missione: il drone dopo il decollo si porterà al punto 1, indi punti 2-3-4 etc., e tornerà a casa una volta raggiunto l'ultimo waypoint. La punta del razzo identifica la prua del drone, ma non la direzione che è rappresentata dalle linee che uniscono i waypoint: questo significa che noi possiamo decidere di manovrare il drone indipendentemente dalla sua posizione, come se nell'applicazione DJI GO avessimo attivato la modalità di volo intelligente Course Lock.

La direzione della punta è per noi importante perché determina il modo in cui le fotografie verranno scattate, se in "landscape" o in "portrait": a noi interessa che la punta sia sempre direzionata secondo la linea che unisce il punto 1 al punto 2 affinché le fotografie siano in modalità "landscape" e rispettino dunque la percentuale di sovrapposizione che abbiamo scelto. Quando il drone passerà dal punto 2 al 3, dal 3 al 4 e così via, non dovremo cambiare orientamento ma mantenere la stessa direzione precedente: questo perché in caso contrario il drone effettuerà delle virate rischiando così di creare delle zone senza foto o delle aree con foto in "portrait". La filosofia di navigazione che dovremo adottare è la stessa della DJI GS Pro, per chi conosce questo software.

UgCS+Litchi tutorial 10

Per modificare la direzione della prua del drone e i dati di navigazione associati a ogni waypoint, dobbiamo prima selezionarlo: si aprirà di conseguenza una finestra sulla destra dello schermo con i "waypoint settings". Primo dato che ci salta all'occhio: UcGS ha sì esportato le traiettorie, ma ha associato ad ogni waypoint una quota di volo di 500 metri, invece che i 39 metri che visualizzavamo nel client. Questo significa che dovremo apportare una modifica su ogni waypoint: un lavoro un po' noioso ma necessario per la buona riuscita della missione. Quindi portiamoci alla voce "altitude" e inseriamo la quota di 40 metri: spuntiamo con un check la voce "Above ground" affinché la quota di volo non sia assoluta dal punto di decollo ma basata sull'andamento altimetrico del terreno, così come già fatto in UcGS. Affinché sia possibile attivare questa opzione, Litchi deve conoscere qual'è il modello di elevazione del terreno per quella località e per questo dobbiamo attivare l'opzione "Use Online Elevation" in the Mission Hub settings.

Ancora meglio, quella che era una funzione a pagamento di UcGS è una possibilità integrata in Litchi: stiamo parlando dell'uso di un DEM per pianificare correttamente l'altezza di volo del drone in funzione delle quote del terreno. Tuttavia Litchi supporta soltanto i DEM in formato .asc WGS-84 Esri ASCII Grid: un formato non particolarmente diffuso rispetto al raster geoTIFF, ma ad esempio il geoportale della Regione Sardegna ha messo a disposizione i dati derivati da LiDAR di una buona parte dell'area costiera dell'isola anche in formato .asc WGS-84.

Ai fini della nostra guida questa opzione non interessa, sarà oggetto di un tutorial avanzato. Quindi affidiamoci all'altimetria del terreno che Litchi prende da Google e terminiamo il lavoro di settaggio dei waypoint. Altro parametro da modificare è il "Gimbal Pitch": esso identifica il tilt del gimbal, in parole povere l'inclinazione della fotocamera. In un lavoro di aerofotogrammetria è importante che l'inclinazione della fotocamera rispetti determinati parametri: per una parete verticale deve essere frontale quindi 0°, per un modello 3D deve essere inclinato, tipicamente tra -50° e -60°, per una ripresa del territorio deve essere nadirale, ovvero -90°. Siccome lo Spark di default ha un'inclinazione compresa tra 0° e -85°, o si modifica tale parametro tramite la DJI GO4 portandolo a -5°/-90° oppure alla voce "Gimbal Pitch" di Litchi dobbiamo selezionare l'opzione interpolate inserendo come valore -85°: non è proprio nadirale al 100%, ma la leggera inclinazione non disturba la qualità del rilievo.

UgCS+Litchi tutorial 11

Una volta terminato il lavoro di settaggio dei waypoint, rivediamo alcune impostazioni prima di volare. Ogni waypoint su mappa è accompagnato da due numeri di cui 1 tra parentesi: il primo numero è la quota di volo che abbiamo impostato, il numero tra parentesi il piano determinato dalla quota di volo del primo waypoint. Ad esempio vediamo i valori del waypoint 29 della nostra immagine: 40 metri il primo numero come quota di volo, 23,7 metri come piano della quota attuale in riferimento al terreno. Questo vuol dire che al waypoint 29 il nostro drone avrà una quota di volo inferiore di 16,3 metri rispetto al primo waypoint. Possiamo fare ulteriori verifiche: Litchi per ogni traiettoria ci dice la sua lunghezza, ovvero la distanza tra 2 waypoint. La distanza che a noi interessa è il valore che divide le strisciate principali, quelle più lunghe per intenderci, e che equivale a determinare la percentuale di sovrapposizione (noi abbiamo scelto il 60%) delle fotografie in base alla quota di volo. Per sapere se il software ha lavorato correttamente, possiamo avvalerci del foglio di calcolo messo a disposizione dall'Ing. G. Beretta. Questo file excel ci permette di calcolare una nutrita serie di dati, compreso la distanza che sarà necessario impostare tra strisciate trasversali per mantenere la corretta sovrapposizione: bene, il file ci dice che la distanza si aggira intorno ai 22 metri. Non ci facciamo ingannare dalla dicitura 12,7 - 12,8 che vediamo in Litchi, in quanto quella è una distanza reale e non proiettata, una distanza che dunque tiene conto della pendenza della traiettoria che segue il drone. La distanza trasversale tra le strisciate sarà di ca. 12 metri, quindi ampiamente rispettosa dei parametri, anzi restituente una sovrapposizione reale di quasi l'80%.

Ora non resta che impostare la velocità di crociera: attualmente lo Spark non supporta un trigger di comando che gli dica in quale momento scattare, dovremo dunque utilizzare la funzione di scatto temporizzato, come se stessimo realizzando un timelapse. Dobbiamo quindi decidere qual'è l'intervallo di tempo necessario per rispettare la sovrapposizione frontale delle fotografie, tenendo presente che il valore minimo da inserire è pari a 2 secondi. Se decidiamo di inserire 3 secondi, dovremo fare in modo che la velocità del drone non oltrepassi l'area di sovrapposizione con l'immagine successiva: a 40 metri, con una sovrapposizione longitudinale del 70% e un intervallo di scatto pari a 3 secondi, la velocità massima del drone è di 4 metri al secondo, che convertiti in Km/h corrispondono a 14,4 Km/h. Questo sarà il valore da inserire alla voce "Cruising speed". Se riteniamo che le condizioni operative potrebbero risultare in un mosso sulle foto a questa velocità, sarà sufficiente aumentare l'intervallo di scatto per diminuire la velocità dell'APR: con un intervallo di 5 secondi tra uno scatto e l'altro, la velocità da tenere è di 2 metri al secondo, pari a 7,2 Km/h.

Teniamo naturalmente presente che la durata operativa della batteria di uno Spark è di ca. 10-12 minuti, quindi sarà necessario parametrare la velocità anche in relazione alla distanza totale da percorrere e alla velocità con la quale verrà percorsa e il ritorno a casa. Nel nostro esempio la missione sull'area da rilevare alla velocità di 2 m/s verrebbe completata in circa 12 minuti, in assenza di vento, quindi al limite di 1 batteria. Meglio sarebbe una velocità di 3 m/s con un intervallo tra gli scatti di 4 secondi.

UgCS+Litchi tutorial 12

Google Earth 3D e Virtual Litchi Mission

Terminato il lavoro di settaggio della nostra missione, possiamo esportare da Litchi un KML in 3D che, importato in Google Earth Pro, ci mostrerà il nostro percorso su mappa, con tanto di elevazione dei vari waypoint: un buon modo per controllare di aver impostato tutto correttamente ma attenzione, il modello digitale di elevazione utilizzato da Google Earth differisce da quello presente in UgCS, il planner che ha generato la missione, pertanto in effetti noteremo che le quote di volo non seguono pedissequamente l'altimetria del terreno. Se siamo fortunati nella ricerca di un DEM in formato .asc, possiamo rientrare in Litchi, importare il DEM per l'area di nostro interesse e correggere le quote ove necessario. Altrimenti qualche correzione potremo apportarla sul campo, direttamente nella Litchi app sul nostro dispositivo mobile, una volta verificato in situ l'effettivo andamento altimetrico del terreno.

UgCS+Litchi tutorial 13

Una bella funzione al Mission Hub è stata aggiunta da due programmi esterni: si tratta di un software per PC Windows e di una sua estensione per il browser Google Chrome, così da poterlo utilizzare anche su computer Mac e Linux. La Virtual Litchi Mission si scarica dal forum mavicpilots, mentre l'estensione la trovate nel webstore di Chrome. Cosa fa: il software si collega direttamente al Mission Hub, quindi lo si può utilizzare a tutti gli effetti come se stessimo lavorando tramite una finestra del browser. Permette di esportare la missione in un formato che viene interpretato da Google Earth come un percorso di camera: in questo modo la camera si muoverà nel mondo virtuale replicando i parametri della nostra missione come fosse il nostro drone e noi con buona approssimazione potremo vedere un'anteprima di quello che sarà il rilievo sul campo. L'estensione fa la stessa identica cosa ma senza uscire dal browser.

Per generare questo file dovremo posizionare il mouse su "mission" e dare il comando "export as csv": questo software genererà invece un file KML che come detto in precedenza sfrutta la funzionalità tour di Google Earth Pro.

UgCS+Litchi tutorial 14
UgCS+Litchi tutorial 15

In Google Earth Pro possiamo visualizzare il tour come fosse un video, inoltre registrarlo ed esportarlo, come fatto in questo caso per farvi vedere il risultato del nostro lavoro. Ecco dunque che grazie a questo tool la nostra missione può essere fatta girare in modo virtuale al fine di verificare che le impostazioni inserite siano corrette: percentuale di sovrapposizione, direzione della camera, direzione del volo, etc.

Test sul campo

Terminata tutta la fase di programmazione, abbiamo messo sotto torchio il nostro Spark per verificare se quanto scritto corrispondesse al vero. Nel breve video potete osservare la missione programmata in corso di svolgimento.

Elaborazione in Agisoft Metashape

Eseguito il volo e l'acquisizione delle immagini, abbiamo poi provato a fare un'elaborazione in Agisoft Metashape demo per vedere se il risultato generasse una nuvola di punti corretta.

Anche in questo caso il test è stato superato a pieni voti, come potete verificare nelle seguenti immagini.

UgCS+Litchi tutorial 16
UgCS+Litchi tutorial 17

Poiché l'app Litchi si collega ad AirData, il servizio offerto da Airdata UAV, Inc. che permette l'analisi dei log di volo dell'APR restituendo informazioni molto dettagliate e di vario tipo sul volo effettuato (il dettaglio dipende dal piano di abbonamento che avete sottoscritto), una volta eseguita la missione programmata è possibile verificare su app.airdata.com se il percorso eseguito è stato corretto. Come possiamo vedere dall'immagine che segue, il drone ha rispettato i percorsi e le quote di volo impostate: il fatto che le linee non siano dritte naturalmente è dovuto al fatto che lo Spark è un oggetto volante soggetto alle turbolenze dell'aria.

UgCS+Litchi tutorial 18

Conclusioni

Siamo giunti alla fine di questa guida su come generare una missione automatica per il rilievo aerofotogrammetrico da fare con un DJI Spark sfruttando le funzionalità della versione demo di UgCS client e dell'app Litchi. È ora di segnalarti una serie di risorse online in parte già citate nel testo: dei tutorial simili a questo sono stati già scritti sviscerando il tema con un approccio diverso. L'Ing. G. Beretta ha illustrato come programmare la missione sfruttando il software open source QGIS+Litchi; l'Ing. P. Corradeghini ha fatto la stessa cosa sfruttando il software a pagamento Thopos+Litchi. Thopos è un software di topografia sviluppato in Italia ad oggi unico nel suo genere, perché è l'unico programma che offre dei tool per pianificare una missione automatica con APR che può essere gestita da Litchi e app simili.

Ora è davvero tutto.

    Legend
    1. Tuo nome (required)
    2. Tua email (richiesto)
    3. Oggetto
    4. Tuo messaggio
    5. Inviando il modulo autorizzi al trattamento dei dati contenuti nin esso contenuti, inclusi quelli personali art. 13 GDPR 679/16, per le finalità descritte, in accordo alla Privacy Policy che dichiari di aver letto
    6. Affinché questo modulo funzioni è necessario abilitare i cookie per il marketing nell'apposito pannello

    * Richiesto

    Nessuno dei dati inseriti nel form e inviati verrà conservato sul server o all'interno di questa piattaforma.

    [wpgdprc "By using this form you agree with the handling of your data by this website."]

    Posted by The Staff in Droni
    Guida al nuovo DJI GEO System 2.0

    Guida al nuovo DJI GEO System 2.0

    Da un paio di mesi è attivo il nuovo sistema di geofencing sviluppato da DJI per i suoi droni, al fine di prevenire voli non autorizzati sopra obiettivi sensibili. Il Geospatial Environment Online System modifica sensibilmente quanto siamo stati abituati a vedere sulla Geo Map, adottando gli standard dell'ICAO ANNEX 14 per la classificazione degli aeroporti e un nuovo sistema poligonale per l'individuazione delle aree no fly: questo migliora sensibilmente le restrizioni limitandole alle sole aree sopra le quali ve ne è effettivo bisogno e rispetto al generico cerchio offre maggiori possibilità di volo ma in qualche caso una restrizione laddove prima si poteva volare. Tutto questo al fine di migliorare la sicurezza di tutti, cose e persone.

    Il GEO 2.0 System interessa i droni appartenenti alla famiglia dei Phantom 4, M200 e Mavic, oltre al DJI Spark e all'Inspire 2, mentre la famiglia Phantom 3, Inspire 1 e M600 continuerà ad adottare il GEO System originale.

    Attualmente il GEO 2.0 System è stato implementato per i soli Stati Uniti, ma arriverà presto anche negli altri Paesi, Italia compresa. Pertanto questa guida serve per prendere coscienza del nuovo sistema ed essere pronti quando sarà implementato in via definitiva anche da noi.

    7 GEO Zones

    Nel video precedente DJI offre utili indicazioni, che dovremmo sempre tenere a mente, per un volo sicuro, e spiega come lavora il nuovo GEO 2.0 System.

    Chi dei lettori vola già da qualche anno, ricorderà sicuramente le divisioni del GEO System originale: verde, giallo e rosso a identificare le aree a diversa restrizione. Ora le aree sono diventate 7, di cui 5 principali e 2 secondarie:

    Restricted Zone. In questa zona, che appare in rosso nell'app DJI GO, il volo è bloccato. Soltanto se l'operatore è autorizzato a volare dalle autorità competenti (trattandosi per lo più di aeroporti, soggetti in Italia alle famose ATZ), potrà fare richiesta di sblocco scrivendo a flysafe@dji.com o collegandosi all'Online Unlocking.

    Altitude Zones. Le zone a limitazione di altezza appariranno in grigio sulla mappa del GEO 2.0 System. Attraverso un warning sull'app DJI GO o DJI GO4 l'utente sarà avvisato che l'altezza di volo è limitata.

    Authorization Zones. In queste zone, che appaiono in blu sulla mappa, l'utente riceverà un warning che lo avviserà del fatto che il volo è limitato. Per sbloccare il decollo del drone DJI autorizzerà l'utente se in possesso di un account su server DJI verificato.

    Warning Zones. In queste zone, che potrebbero NON apparire sulla mappa all'interno dell'app DJI GO, l'utente riceverà un avviso che sta operando in tale area. Un esempio di Warning Zone sono le aree di protezione per gli animali, come i parchi nazionali (in Italia il volo nei parchi nazionali sotto i 500 metri AGL è vietato da una specifica legge).

    Enhanced Warning Zones. In queste zone, il sistema GEO avviserà l'utente che sarà necessario ottenere l'autorizzazione al volo come nel caso delle Authorization Zone, ma per decollare non sarà necessario possedere un account verificato o essere collegati a internet al momento del volo.

    Densely Populated Area. Quest'area è mostrata in rosso sulla mappa. A causa dell'elevata concentrazione di persone che rende il volo non sicuro, DJI consiglia di non sorvolare quest'area. Un esempio sono i centri commerciali.

    Regulatory Restricted Zones. Si tratta di aree speciali dove il volo è vietato da restrizioni legislative o altri provvedimenti simili. Un esempio sono le aree che circondano le prigioni.

    Recommended flight. Quest'area apparirà in verde sulla mappa. Si tratta di zone dove DJI consiglia di scegliere di andare a volare, preselezionate per un volo sicuro lontano da centri urbani e concentrazioni di persone.

    DJI GEO 2.0 System Italia tutorial

    Ecco come appare oggi la mappa sul centro Italia per chi usa un drone della serie Mavic, Phantom 4, M200 oppure uno Spark o un Inspire 2, con l'implementazione delle nuove zone e il nuovo sistema a poligoni per determinare con più esattezza le aree di divieto. Le nuove Geo Zone sono state attivate anche in Italia a fine febbraio 2019.

    DJI GEO System 1.0 Italia

    Questo invece è il confronto con il vecchio GEO System, attivo per chi ancora vola negli USA con la serie Phantom 3, M600 o con un Inspire 1, con le aree individuate da cerchi di raggio predefinito, e per tutti noi che voliamo in Italia.

    Bisogna ricordare che il DJI GEO 2.0 System è un sistema indipendente dalle leggi nazionali e dai regolamenti locali (come il Regolamento SAPR emanato da ENAC o la cartografia AIP di ENAV), ed è basato unicamente su un concetto di sicurezza e di prevenzione nell'uso sconsiderato dei droni DJI. La stessa azienda avvisa che potranno essere attivate aree di restrizione temporanee, sopra stadi che ospitano eventi di particolare rilevanza, incendi e altre situazioni di emergenza, ma che queste come altre aree potrebbero apparire soltanto sulla mappa presente all'interno dell'app DJI GO e non sulla web map.

    Nella maggior parte delle zone soggette a restrizione, all'utente sarà chiesto di dimostrare che è in possesso delle autorizzazioni necessarie ad operare: inoltre avrà bisogno di un account verificato sul server DJI e di una connessione internet attiva sul dispositivo che controlla il drone al momento del decollo. In alcune zone lo sblocco del drone potrà essere messo in atto dallo stesso utente, attraverso un'azione di auto-autorizzazione sulla relativa pagina DJI.

    È bene ancora ricordare che bisogna controllare la mappa mostrata all'interno dell'app DJI GO e DJI GO4 per essere certi che l'area dove si vuole volare non ricada all'interno di una zona di restrizione. Come scritto in precedenza non tutte queste aree vengono mostrate sulla web map presente sul sito DJI.

    DJI GEO System: solo per DJI GO, non per app di terze parti

    Poiché il sistema GEO di DJI (in entrambe le versioni, 1.0 e 2.0) richiede una connessione ad internet e un account sul server dell'azienda, le aree con restrizioni di volo possono essere bypassate soltanto se l'applicazione attiva sul device di controllo è la DJI GO o la DJI GO4 o la DJI GS Pro se avete un iPad: nulla da fare dunque per Litchi, Autopilot, Pix4D Capture e tutte le altre applicazioni di terze parti per il volo automatico per fare riprese o rilievi aerofotogrammetrici. Il volo dovrà essere manuale, oppure sfruttare il sistema astruso dei waypoint che offre DJI GO.

    Per questo è buona pratica controllare sempre prima di recarsi a volare se l'area è affetta da restrizioni di volo imposte dal sistema DJI: perché una volta sul campo, non avrete modo di far decollare il vostro drone senza aver compiuto i dovuti passaggi per l'unlock.

    Una guida su come sbloccare il drone e volare nelle zone con restrizione sarà presto disponibile.

    Posted by The Staff in Droni

    Ultime ore per le offerte DJI, si può risparmiare fino a €300

    DJI Mavic Air

    Si avvicina la fine del 2018 e con essa anche il termine delle offerte che DJI ha lanciato in occasione del Black Friday: una pioggia di sconti che consente di risparmiare fino a €110 su singolo prodotto ma volendo fino a oltre €300 acquistando i prodotti in bundle. Si va dal piccolissimo Ryze Tello fino al DJI Mavic Air Combo, passando per i Goggles RE e il DJI Osmo Mobile 2. Inoltre se acquisti il DJI Spark, nella versione normale o Fly More Combo, a sole €129 in più avrai anche il kit di alleggerimento per farlo diventare un "trecentino" e la documentazione da presentare ad ENAC per diventare operatore SAPR. Il prezzo segnalato è quello già scontato, mentre sull'immagine vedete l'ammontare dello sconto rispetto al costo normale del prodotto.

    Ricorda, al termine dell'offerta mancano solo

    [tminus t= "31-12-2018 23:59:59" style="carbonite" jsplacement="inline" omitweeks="true" days="giorni" hours="ore" minutes="minuti" seconds="secondi"]L'offerta DJI di Natale 2018 è terminata.[/tminus]
    Ryze Tello
    € 99
    Offerta Natale DJI Ryze Tello
    Ryze Tello Combo
    € 129
    Offerta Natale DJI Ryze Tello Combo
    DJI Spark con radiocomando
    € 439
    Offerta Natale DJI Spark con radiocomando

    Con kit di alleggerimento 300 gr. e documentazione ENAC a sole € 129 in più

    DJI Spark Fly More Combo
    € 539
    Offerta Natale DJI Spark Fly More Combo

    Con kit di alleggerimento 300 gr. e documentazione ENAC a sole € 129 in più

    DJI Mavic Air
    € 749
    Offerta Natale DJI Mavic Air

    Disponibile in offerta anche nelle varianti rosso e nero

    DJI Mavic Air Fly More Combo
    € 949
    Offerta Natale DJI Mavic Air Fly More Combo

    Disponibile in offerta anche nelle varianti rosso e nero

    DJI Osmo Mobile 2
    € 119
    Offerta Natale DJI Osmo Mobile 2
    DJI Goggles RE
    € 499
    Offerta Natale DJI Goggles RE

    Disponibile in offerta anche nelle varianti "con zaino multifunzione" (€ 579) e "con Zaino Multifunzione e Modulo OcuSync 2" (€ 729)

    Se hai bisogno di una consulenza, di consigli sull'acquisto, di conoscere meglio i prodotti prima di acquistarli, non esitare a contattarci.

      Legend
      1. Tuo nome (required)
      2. Tua email (richiesto)
      3. Oggetto
      4. Tuo messaggio
      5. Inviando il modulo autorizzi al trattamento dei dati contenuti nin esso contenuti, inclusi quelli personali art. 13 GDPR 679/16, per le finalità descritte, in accordo alla Privacy Policy che dichiari di aver letto
      6. Affinché questo modulo funzioni è necessario abilitare i cookie per il marketing nell'apposito pannello

      * Richiesto

      Nessuno dei dati inseriti nel form e inviati verrà conservato sul server o all'interno di questa piattaforma.

      [wpgdprc "By using this form you agree with the handling of your data by this website."]

      Posted by The Staff in Droni

      Presentato il DJI Phantom 4 RTK per rilievi aerei

      DJI Phantom 4 RTK

      DJI ha aggiornato il suo prodotto di punta della classe Phantom aggiungendo il modulo RTK e creando il Phantom 4 RTK: nei desiderata della casa cinese un drone per rilievi aerofotogrammetrici con precisione centimetrica. Le parole di Sunny Liao, DJI Enterprise Director per l'Europa, vanno proprio in questa direzione:

      “Phantom 4 RTK è stato studiato per venire incontro alle esigenze specifiche di quegli utenti che sentono la necessità di affidarsi ai potenti strumenti di cui sono dotati i droni DJI per eseguire rilievi, mappature e ispezioni

      L'acronimo RTK sta per Real-Time Kinematic, ovvero rilievo cinematico in tempo-reale: si tratta della tecnologia che consente ai ricevitori GNSS "terrestri" di ottenere una precisione centimetrica nel punto da acquisire, differenziandosi in tal modo dai ricevitori GNSS presenti ad esempio nei nostri smartphone che si basano esclusivamente su una posizione stimata, che viene aumentata attraverso la connessione GSM. Il discorso non cambia con l'RTK professionale, perché la precisione centimetrica viene garantita da una correzione della posizione ottenuta attraverso la connessione con una rete di ricevitori satellitari fissi posti a terra: in tal modo si chiude il triangolo ed è possibile stimare con precisione la posizione del punto in base al sistema della triangolazione. La connessione alla rete terrestre viene ottenuta attraverso il protocollo NTRIP che trasferisce i dati RCTM: le reti di ricevitori terrestri sono svariate, si va da quelle nazionali tipo ITALPOS (che però essendo privata è a pagamento) a quelle regionali, alcune a pagamento (come quella della Sardegna), altre gratuite (come quelle di Lazio, Abruzzo, etc.). I dati vengono trasmessi attraverso una connessione internet, tipicamente una connessione GSM che deve essere di buona qualità (almeno H+ o 4G) per consentire una correzione veramente in tempo reale. In mancanza di questa connessione, non esiste alcuna correzione RTK quindi non c'è alcuna precisione centimetrica. La connessione GSM può essere interna alla strumento, oppure esterna, collegando tramite WiFi il controller del ricevitore all'hotspot del nostro smartphone.

      Il Phantom 4 RTK garantisce questa connessione attraverso una chiavetta dongle 4G o un hotspot WiFi (supportato da OcuSync in aree con 5.8GHz: SRRC/NCC/FCC < 26 dBm). Abbiamo detto però che la connessione può essere assente o non sufficientemente veloce: in quel caso bisogna passare al sistema base+rover, che chiude la triangolazione per la correzione attraverso una base che rimane fissa e sostituisce le basi fisse delle reti terrestri. La base deve rimanere fissa svariati minuti prima di iniziare a lavorare. Anche in questo caso il Phantom 4 RTK risolve il problema con la stazione di terra D-RTK2 Mobile Station, un ricevitore differenziale posto a terra che si occupa di chiudere il triangolo, comunicando con il drone attraverso OcuSync.

      La panacea di tutti i problemi?

      I professionisti del rilievo aerofotogrammetrico sanno bene quanto sia difficile a volte acquisire di punti GCP in ambienti ostili: i Ground Control Point sono i punti acquisiti con sistemi di alta precisione che servono al software per la correzione metrica del modello, senza la quale non si può parlare di fotogrammetria. È davvero possibile pensare di poter eliminare la necessità di acquisire i GCP utilizzando il Phantom 4 RTK? La risposta tecnicamente corretta è NO.

      Il motivo è presto spiegato: anche se la correzione metrica fosse corretta in base alla posizione accurata delle immagini, non è corretta l'altimetria del modello: le coordinate vengono infatti acquisite calcolando l'altimetria sulla base dell'ellissoide, mentre la quota reale deve essere corretta sulla base del geoide. Questo è il motivo per cui se il vostro Phantom decolla da una spiaggia e si porta a 50 metri di altezza, le sue coordinate gli faranno credere di essere a 100 metri di quota. La differenza altimetrica tra ellissoide e geoide si stima infatti mediamente intorno ai +50 metri. Un ricevitore GNSS professionale ha la possibilità di essere impostato affinché le sue coordinate altimetriche vengano corrette sulla base del geoide (in Italia i più diffusi sono l'ITA99 e l'ITA2008), ma un lavoro veramente accurato si ottiene soltanto convertendo le coordinate con l'uso dei grigliati prodotti dall'IGM.

      Inoltre non bisogna dimenticare che a livello ufficiale, il WGS84 generalmente utilizzato dai droni in quanto sistema di riferimento internazionale, non è un sistema riconosciuto dallo Stato Italia, per cui nella produzione di cartografia destinata alla progettazione pubblica, ricorda la Direzione Geodetica dell'IGM, va utilizzato il Sistema Geodetico di Riferimento ETRF2000 epoca 2008.0 divenuto obbligatorio a livello nazionale a seguito del DM 10 novembre 2011 "Regole tecniche per la definizione delle specifiche di contenuto dei database geotopografici".

      Quindi l'idea che si possano eliminare i GCP è, almeno oggi, tecnicamente sbagliata. Inoltre bisogna aggiungere che non di soli GCP vive la fotogrammetria: un lavoro veramente valido si appoggia anche ai punti di controllo, per una verifica indipendente dell'accuratezza del progetto, e anch'essi vanno acquisiti necessariamente a terra con strumentazione topografica di precisione.

      La soluzione per i punti inaccessibili

      Si potrebbe giustamente rispondere che il Phantom 4 RTK risolve il problema di dover acquisire i GCP in punti inaccessibili: l'obiezione è che se i punti sono inaccessibili difficilmente c'è bisogno di rilevarli con un drone (saranno 2 o 3 i casi su 100), ma in ogni caso è possibile ovviare alla difficoltà con la stazione totale, uno strumento che è in grado di acquisire coordinate relative fino a 1 Km (a seconda dei modelli) in modalità reflectorless, semplicemente puntando un obiettivo che può essere riconosciuto con precisione sulle immagini. Anche la stazione totale è uno strumento che può essere noleggiato a partire da €100 al giorno. Se il chiodo stazione viene rilevato con il ricevitore GNSS, è possibile convertire il sistema di coordinate relativo della stazione totale nel sistema di coordinate assoluto del GNSS.

      DJI D-RTK2 Mobile Station

      I prezzi

      DJI Phantom 4 RTK viene venduto in 3 configurazioni diverse:

      Normalmente un Phantom 4 Pro V2 costa €1.699, un buon sistema di ricevitori GNSS terrestri base+rover costa ca. €15.000 (nuovo, se usato molto meno, anche la metà), un solo rover costa ca. €8.500. Da un punto di vista del costo netto, un risparmio davvero notevole, ma considerando che rilievi di questo tipo vengono eseguiti per lo più da professionisti che nella vita fanno già i geometri, gli architetti, gli ingegneri, è probabile che tali strumenti siano già posseduti, per essere utilizzati in tutte le situazioni dove è necessario acquisire punti con precisione centimetrica, mentre la soluzione drone è a se stante, funziona solo in aria e non a terra. Inoltre, un ricevitore GNSS RTK si può noleggiare senza troppa difficoltà a prezzi che partono da €100 al giorno, quindi in definitiva oltre a non eliminare la necessità di acquisire i punti GCP (che comunque necessitano di uno strumento topografico terrestre), non fanno nemmeno risparmiare.

      La disponibilità del Phantom 4 RTK è a partire da ottobre 2018, mentre per il D-RTK2 bisogna aspettare novembre 2018.

      DJI GS RTK

      Insieme al drone, DJI ha presentato anche GS RTK (o GSR), la nuova app compatibile con il sistema RTK che consente la pianificazione della missione di rilevamento, che può essere salvata e replicata nel tempo, e che consente il caricamento di file KML e KMZ relativi all'area da mappare. Presente anche la funzione Operation Resumption che, qualora la batteria non sia sufficiente per completare la missione, vi consente di cambiarla ripristinando i dati di missione in maniera automatica.

      Posted by The Staff in News